Project explanation:

There is directory named pydir, that has two subdirectories ' $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ ' and 'x2+y2=z2-float'.
' $x 2+y 2=z 2$ ' subdirectory contain files related to plot of XYZ points which are integer numbers as result of the $x 2+y 2=z 2$ equation.
'x2+y2=z2-float' subdirectory contain files related to plot of XYZ points which are float numbers as result of the $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ equation.

```
root@ikali:~/pydir# ls
BackupFiles 'x2+y2=z2' 'x2+y2=z2-float'
root@ikali:~/pydir# |
```

- py1.py file is Python program that shows results from $x 2+y 2=z 2$ equation
- BashPy file is Bash Script (can be executed using command: ~/bash BashPy)
- 3D_Template.py is file that has template Python code, but we need to add elements of lists x, y and z
- 3D_Plot_Points.py is file as result of adding data inside 3D_Template.py file. Then this file is ready to be executed and plot the results.

```
root@ikali:~/pydir# ls
BackupFiles 'x2+y2=z2' 'x2+y2=z2-float'
root@ikali:~/pydir#
root@ikali:~/pydir#
root@ikali:~/pydir# cd 'x2+y2=z2'
root@ikali:~/pydir/x2+y2=z2# ls
3D_Plot Points.py BackupFiles FutureUse ResultingPlots
3D_Template.py BashPy py1.py
root@ikali:~/pydir/x2+y2=z2#
root@ikali:~/pydir/x2+y2=z2# }
```


Project execution:

1. Using command script test1 we will collect all Linux terminal output inside the file named test1.
2. Now we will execute our first Python code from file py1.py using command python py1.py.
3. When we use command exit we will stop execution of command script test1 in Linux terminal and output of the executed py1.py Python code will be stored inside file test1-and no more recordings from the terminal window.
4. Next is to execute our Bash Script named BashPy using bash BashPy command. This script creates file named 3D_Plot_Points.py.
5. We execute our second Python code from 3D_Plot_Points.py file using python 3D_Plot_Points.py command. Result is plot in 3D space.

```
root@ikali:~/pydir# ls
BackupFiles 'x2+y2=z2' 'x2+y2=z2-float'
root@ikali:~/pydir#
root@ikali:~/pydir#
root@ikali:~/pydir# cd 'x2+y2=z2'
root@ikali:~/pydir/x2+y2=z2# ls
3D_Plot_Points.py BackupFiles FutureUse ResultingPlots
3D_Template.py BashPy py1.py
roott@ikali:~/pydir/x2+y2=z2#
root@ikali:~/pydir/x2+y2=z2# \square
```


I. $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ equation solved with integer numbers

I.1. Content of our Python code, that solves $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ equation with results integer numbers, is inside of the py1.py file:


```
class EquationXYZ():
    def _init_(se
        self.N = N
        self.N = N
    def Calc_and_Print(self):
        global j
        x=[]
        while self.i<self.N:
            first=self.i**2
            second=(self.i+self.j)**2
            difference=(self.i+self.j)**2-self.i**2
            third=(abs(difference))**0.5
            if cl.is_integer(third)==True and (self.i+self.j)**2==self.i**2+difference:
                #print("X:Y:Z <--->", third, ":", float(self.i), ":", float(self.i+self.j), "")
                x.append((third, float(self.i), float(self.i+self.j)))
                #print(x)
            se
            print(x)
        j+=1
cl=Init()
i=c1.Lower Range()
N=c1.Higher Range()
#print("Results for equation \mp@subsup{X}{}{\wedge}2+\mp@subsup{Y}{}{\wedge}2=\mp@subsup{Z}{}{\wedge}2, for the range", i, "to", N, "are:")
j=1
def Test(j,N)
    x=[]
    while j<(N//2):
        #print("Result when satisfied: X - Y =",j)
```


I.1.1 Example of the form of the output when we execute py1.py file, is shown bellow:

Because this output is hard to manage and to integrate into Python known data formats, we choose to save it as it is in a test1 temporary file, and later we will process and arrange data as we need.

I.2. Content of Bash Script named BashPy is:

root@ikati:~/pydir/x2+y2=z2\# root@ikali:~/pydir/x2+y2=z2\# cat BashPy \#!/bin/bash	
\#INSTRUCTION:	PyScriptil.xt
\# Write following commands in terminal: 2.png 3.png ${ }^{\text {m.png }}$	
(1) Downscript test1	
\% Musicython pyl.py \square	Scriprestet
\#exit	
\#bash BashPy 5.png desktop photo.jpg	
\# python 30_Plot_Points.py	
\# NOTE: If you use second time this project, delete all files in the folder except: \# py1.py, BashPy, 3D_Template.py	
+ Othe \# ocations or go to the last line and uncheck \# in last command	
\# \quad rm 3D_Plot_Points.py 3D_Template_x.py Xval Yval 3D_Template_y.py XYZResults Zval \# and before you begin remove also file 3D Plot Poins.py	
\#copies all text inside the parentesses () from file 'testl' and save it o the 'test2' file sed $-\mathrm{E}-\mathrm{n}$'s/.*((.*)).*\$/\1/p' test1 >> test2	
\#removes all duplicate lines in a file 'test2' and save unique lines in to file 'test2' awk '!seen $[\$ 0]++$ ' test2 >> test3	
\#removes all lines that end with 0.0 sed "/\0.0\$/d" test3 >> XYZResults	
sleep 2	
rm test1 test2 test3	

sleep 2	
rm test1 test2 test3	
\#get first word in any line in file XYZResults and save it in file Xvalues awk '\{print \$1\}' XYZResults >> Xvaluesver	
\#transfers elements from vertical to horizontal order in file Xvaluesver and save it in file Xvalues cat Xvaluesver \| tr -d '\n' >> Xvalues	scripthitit
\#removes the last character (in this case ',') from a file Xvalues and changes are saved in file Xvalues1 sed '\$ s/.\$//' Xvalues >> Xvalues1	
sleep 1	ciprext
\#adds sqare brackets at the beggining and end of text in file Xvalues and save it in file Xval sed -e '1s/^/[/' - e 's/\$/./' - e '\$s/,\$/]/' Xvalues1 >> Xval	
\#deletes first word in any line in file XYZResults and save it in file test 4 awk ' $\{\$ 1=$ ""; print substr $(\$ 0,2)\}$ ' XYZResults \gg test 4	
\#get first word in any line in file test 4 and save it in file Yvaluesver awk '\{print \$1\}' test4 >> Yvaluesver	
\#transfers elements from vertical into horizontal order in file YvaluesVer and save it in file Yvalues cat Yvaluesver \| tr -d '\n' >> Yvalues	
\#removes the last character (in this vase ',') from a file Yvalues and changes are saved in file Yvalues1 sed '\$ s/. \$//' Yvalues >> Yvalues1	
sleep 1	
\#adds square brackets at the beggining and the end of text in file Yvaluesl and save it in file Yval sed -e '1s/^/[/' -e 's/\$/,/' -e '\$s/,\$/]/' Yvalues1 >> Yval	
\#deletes first word in any line in file test4 and save it in file ZvaluesVer awk '\{print \$1\}' test4 >> Zvaluesver	
\#transfers elements from vertical to horizontal order in file ZvalueVer and save it in file Zvalues cat ZvaluesVer \| tr -d 'In' \gg Zvalues	

How we manage data inside the temporary documents and how they are removed is shown in a lines with comments marked with \#.
sleep commands are used temporary documents to be created and populated with data, before this temporary document is called with next line command. For exqmple sleep 1 command delayes execution for 1 second of following command writen in the next line.

This Bash Script as result creates file 3D_Plot_Points.py, which later we execute.
I.3. Content of template file named 3D_Template.py is:

After we execute BashPy file it processes the data, then it populates resulting data in a form of elements in x, y and z lists, inside 3D_Plot_Points.py file.

Content of our Python code inside the 3D_Plot_Points.py file, to plot XYZ dots is:

I. 4 Plotting the resuts

If we follow instruction above for project execution, as result we will receive one 3D plot with dots.

If we repeat overall procedure for different ranges of N , resulting plots are:

Plot 1 N number range is from 1 to 30

Plot 2 N number range is from - 30 to 30

Plot 3 N number range is from -100 to 100

Plot 4 N number range is from - 1000 to 1000
Resulting plots show us that all dots are in the same 2D plane.

II. $x 2+y 2=z 2$ equation solved with float numbers

II. 1 Changes are created inside py1.py file:

II. 2 Plotting the resuts

If we repeat overall procedure for different ranges of N, resulting plots are:

Plot 1 N number range is from -5 to 5 , step to next number is 0.1

Plot 2 N number range is from -7 to 7 , step to next number is 0.1

Plot 3 N number range is from -10 to 10 , step to next number is 0.1

Plot 4 N number range is from -30 to 30 , step to next number is 0.1
Resulting plots show us that all dots are in the same 2D plane.

III. In similar way we can find complex numbers that satisfy $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ equation

Plotting can be done as group of three dots: $\{\operatorname{Re}(x), \operatorname{Im}(x)\},\{\operatorname{Re}(y), \operatorname{Im}(y)\}$ and $\{\operatorname{Re}(\mathrm{z}), \operatorname{Im}(\mathrm{z})\}$ in complex plane. If we connect these three dots we will have line (if x or y is 0) or triangle ($\mathrm{x}, \mathrm{y}, \mathrm{z}!=0$) as resulting object. Any other complex numbers as solution to the $\mathrm{x} 2+\mathrm{y} 2=\mathrm{z} 2$ equation will create group of dots that can be plotted as well as an object.

